Cette étude a été complétée par Carlo Alberini le 16 février 2015, le résultat définitif est ici :
http://pstricks.blogspot.fr/2015/02/une-etude-graphique-de-la-tour-eiffel.html
\documentclass[12pt,a4paper]{article}
\usepackage[dvipsnames]{xcolor}
\usepackage{pst-3dplot}
% Carlo Alberini
\begin{document}
\begin{center}
\psset{Alpha=60,Beta=30}
\begin{pspicture}(-5,-3)(5,9.5)
\pstThreeDCoor[xMin=-5,xMax=5,yMin=-5,yMax=5,zMax=10]
%
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](4,0,0)(0,4,0)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](0,4,0)(-4,0,0)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](-4,0,0)(0,-4,0)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-4,0)(4,0,0)
%
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](4,0,0)(4,0,0.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,4,0)(0,4,0.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](-4,0,0)(-4,0,0.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-4,0)(0,-4,0.125)
%
\pstThreeDSquare[fillcolor=gray,fillstyle=solid,linecolor=blue,linewidth=0.5pt,opacity=0.2](4,0,0.125)(-4,4,0)(-4,-4,0)
%
\pstThreeDSquare[fillcolor=gray,fillstyle=solid,linecolor=blue,linewidth=0.5pt,opacity=0.2](1.5,0,3.125)(-1.5,1.5,0)(-1.5,-1.5,0)
%
\pstThreeDSquare[fillcolor=gray,fillstyle=solid,linecolor=blue,linewidth=0.5pt,opacity=0.2](0.2265,0,8.5)(-0.2265,0.2265,0)(-0.2265,-0.2265,0)
%
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0.2265,0,8.3755)(0,0.2265,8.3755)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dotted](0,0.2265,8.3755)(-0.2265,0,8.3755)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dotted](-0.2265,0,8.3755)(0,-0.2265,8.3755)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-0.2265,8.3755)(0.2265,0,8.3755)
%
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](1.5,0,3)(0,1.5,3)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](0,1.5,3)(-1.5,0,3)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](-1.5,0,3)(0,-1.5,3)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-1.5,3)(1.5,0,3)
%
\pstThreeDLine[linewidth=0.5pt,linecolor=gray,linestyle=dashed](0,1.5,3)(0,-1.5,3)
\pstThreeDLine[linewidth=0.5pt,linecolor=gray,linestyle=dashed](1.5,0,3)(-1.5,0,3)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dotted](0.2265,0,8.3755)(0.2265,0,8.5)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,0.2265,8.3755)(0,0.2265,8.5)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dotted](-0.2265,0,8.3755)(-0.2265,0,8.5)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-0.2265,8.3755)(0,-0.2265,8.5)
%
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](1.5,0,3)(1.5,0,3.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](-1.5,0,3)(-1.5,0,3.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue,linestyle=dashed](0,1.5,3)(0,1.5,3.125)
\pstThreeDLine[linewidth=0.5pt,linecolor=blue](0,-1.5,3)(0,-1.5,3.125)
\parametricplotThreeD[xPlotpoints=200,
linecolor=Mahogany,%
linewidth=0.75pt,plotstyle=curve,linestyle=dashed,
algebraic](0.005,0.083333){% radiant
0 | 48*t | -3*ln(12*t)+0.125}
\parametricplotThreeD[xPlotpoints=200,
linecolor=Mahogany,%
linewidth=0.75pt,plotstyle=curve,linestyle=dashed,
algebraic](0.005,0.083333){% radiant
48*t | 0 | -3*ln(12*t)+0.125}
%
\parametricplotThreeD[xPlotpoints=200,
linecolor=Mahogany,%
linewidth=0.75pt,plotstyle=curve,linestyle=dashed,
algebraic](0.005,0.083333){% radiant
0 | -48*t | -3*ln(12*t)+0.125}
\parametricplotThreeD[xPlotpoints=200,
linecolor=Mahogany,%
linewidth=0.75pt,plotstyle=curve,linestyle=dashed,
algebraic](0.05,0.083333){% radiant
-48*t | 0 | -3*ln(12*t)+0.125}
\parametricplotThreeD[xPlotpoints=200,
linecolor=Mahogany,%
linewidth=0.75pt,plotstyle=curve,linestyle=dotted,
algebraic](0.005,0.05){% radiant
-48*t | 0 | -3*ln(12*t)+0.125}
\pstThreeDLine[linewidth=1pt,linecolor=blue,arrows=->](0,0,3)(0,0,1)
\rput[bl](0.1,1.0){\footnotesize{$d\vec{F}_{P}$}}
\rput[bl](1.4,2.2){\footnotesize{$dz$}}
\end{pspicture}
\end{center}
\end{document}
Aucun commentaire:
Enregistrer un commentaire