Le document (calculs_intersection.pdf) est dans l'archive:
Méthode utilisant les équations paramétriques du bicône :
\begin{center}
\begin{pspicture}(-4,-7)(4,7)
\psset{lightsrc=viewpoint}
\psset{viewpoint=100 20 30 rtp2xyz,Decran=100}
\psSolid[object=grille,base=-4 4 -4 4,linecolor={[rgb]{0.72 0.72 0.5}}](0,0,-3)
\psSolid[object=cone,h=3,r=3,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50,
grid,
ngrid=9 30](0,0,-3)
\psset{solidmemory}%
\psSolid[object=cone,h=3,r=3,
rm=0,
plansepare={[0 0.707 0.707 -1.30]},
name=ConeB,
RotY=180,
ngrid=9 30,
action=none](0,0,3)%
\psSolid[object=load,
load=ConeB1,
hollow,rm=0,
grid,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50]%
\psSolid[object=plan,definition=equation,
args={[0 0.707 0.707 -1.3] 180},
base=-4 4 -8 4,
planmarks,showBase,
opacity=.5,
fillcolor=green!20]%
\pstVerb{/omega 45 def /H 3 def
/t_1 1.3 H omega sin mul sub H div omega cos div Arcsin def
/t_2 pi t_1 sub def}%
\end{pspicture}
\end{center}
Méthode utilisant l'équation cartésienne du bicône :\begin{pspicture}(-4,-7)(4,7)
\psset{lightsrc=viewpoint}
\psset{viewpoint=100 20 30 rtp2xyz,Decran=100}
\psSolid[object=grille,base=-4 4 -4 4,linecolor={[rgb]{0.72 0.72 0.5}}](0,0,-3)
\psSolid[object=cone,h=3,r=3,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50,
grid,
ngrid=9 30](0,0,-3)
\psset{solidmemory}%
\psSolid[object=cone,h=3,r=3,
rm=0,
plansepare={[0 0.707 0.707 -1.30]},
name=ConeB,
RotY=180,
ngrid=9 30,
action=none](0,0,3)%
\psSolid[object=load,
load=ConeB1,
hollow,rm=0,
grid,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50]%
\psSolid[object=plan,definition=equation,
args={[0 0.707 0.707 -1.3] 180},
base=-4 4 -8 4,
planmarks,showBase,
opacity=.5,
fillcolor=green!20]%
\pstVerb{/omega 45 def /H 3 def
/t_1 1.3 H omega sin mul sub H div omega cos div Arcsin def
/t_2 pi t_1 sub def}%
\defFunction[algebraic]{parabole}(t)%
{1.3*cos(t)/(0.707+0.707*sin(t))}
{1.3*sin(t)/(0.707+0.707*sin(t))}
{1.3/(0.707+0.707*sin(t))}
\psSolid[object=courbe,
r=0,
% range=-0.4 3.54,
range=t_1 t_2,
linecolor=blue,
linewidth=2\pslinewidth,
function=parabole]
\axesIIID(0,0,1.3)(5,5,7)\end{pspicture}
\end{center}
\begin{center}
\begin{pspicture}(-4,-7)(4,7)
\psset{lightsrc=viewpoint}
\psset{viewpoint=100 15 15 rtp2xyz,Decran=100}
\psSolid[object=grille,base=-4 4 -4 4,linecolor={[rgb]{0.72 0.72 0.5}}](0,0,-3)
\psSolid[object=cone,h=3,r=3,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50,
grid,
ngrid=9 30](0,0,-3)
\psset{solidmemory}%
\psSolid[object=cone,h=3,r=3,
rm=0,
plansepare={[0 0.707 0.707 -1.30]},
name=ConeB,
RotY=180,
ngrid=9 30,
action=none](0,0,3)%
\psSolid[object=load,
load=ConeB1,
hollow,rm=0,
grid,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50]%
\psSolid[object=plan,definition=equation,
args={[0 0.707 0.707 -1.3] 180},
base=-4 4 -8 4,
planmarks,showBase,
opacity=.5,
fillcolor=green!20]%
\end{pspicture}
\end{center}
\begin{pspicture}(-4,-7)(4,7)
\psset{lightsrc=viewpoint}
\psset{viewpoint=100 15 15 rtp2xyz,Decran=100}
\psSolid[object=grille,base=-4 4 -4 4,linecolor={[rgb]{0.72 0.72 0.5}}](0,0,-3)
\psSolid[object=cone,h=3,r=3,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50,
grid,
ngrid=9 30](0,0,-3)
\psset{solidmemory}%
\psSolid[object=cone,h=3,r=3,
rm=0,
plansepare={[0 0.707 0.707 -1.30]},
name=ConeB,
RotY=180,
ngrid=9 30,
action=none](0,0,3)%
\psSolid[object=load,
load=ConeB1,
hollow,rm=0,
grid,
fillcolor={[rgb]{0.5 0.72 0.5}},incolor=yellow!50]%
\psSolid[object=plan,definition=equation,
args={[0 0.707 0.707 -1.3] 180},
base=-4 4 -8 4,
planmarks,showBase,
opacity=.5,
fillcolor=green!20]%
\defFunction[algebraic]{parabole}(t)%
{t}
{-0.272*t^2+0.919}
{0.272*t^2+0.919}
\psSolid[object=courbe,
r=0,
range=-2.766 2.766,
linecolor=red,
linewidth=2\pslinewidth,
function=parabole]
\axesIIID(0,0,1.3)(5,5,7)\end{pspicture}
\end{center}
Aucun commentaire:
Enregistrer un commentaire